Sample data from the prior predictive distributions of the two-period, single arm Augmented Binary model, subject to chosen prior parameters.

prior_predictive_augbin_2t_1a(
  num_samps,
  alpha_mean,
  alpha_sd,
  beta_mean,
  beta_sd,
  gamma_mean,
  gamma_sd,
  sigma_mean,
  sigma_sd,
  omega_lkj_eta,
  alpha_d1_mean,
  alpha_d1_sd,
  gamma_d1_mean,
  gamma_d1_sd,
  alpha_d2_mean,
  alpha_d2_sd,
  gamma_d2_mean,
  gamma_d2_sd
)

Arguments

num_samps

Number of samples.

alpha_mean

Prior mean of alpha parameter.

alpha_sd

Prior sd of alpha parameter.

beta_mean

Prior mean of beta parameter.

beta_sd

Prior sd of beta parameter.

gamma_mean

Prior mean of gamma parameter.

gamma_sd

Prior sd of gamma parameter.

sigma_mean

Prior mean of sigma parameter.

sigma_sd

Prior sd of sigma parameter.

omega_lkj_eta

Prior eta parameter for LKJ prior on covariance matrix of log tumour sizes.

alpha_d1_mean

Prior mean of alpha_D1 parameter.

alpha_d1_sd

Prior sd of alpha_D1 parameter.

gamma_d1_mean

Prior mean of gamma_D1 parameter.

gamma_d1_sd

Prior sd of gamma_D1 parameter.

alpha_d2_mean

Prior mean of alpha_D2 parameter.

alpha_d2_sd

Prior sd of alpha_D2 parameter.

gamma_d2_mean

Prior mean of gamma_D2 parameter.

gamma_d2_sd

Prior sd of gamma_D2 parameter.

Value

Object of class tibble

See also

Examples

prior_predictive_augbin_2t_1a(num_samps = 1000, alpha_mean = 0, alpha_sd = 1, beta_mean = 0, beta_sd = 1, gamma_mean = 0, gamma_sd = 1, sigma_mean = 0, sigma_sd = 1, omega_lkj_eta = 1, alpha_d1_mean = 0, alpha_d1_sd = 1, gamma_d1_mean = 0, gamma_d1_sd = 1, alpha_d2_mean = 0, alpha_d2_sd = 1, gamma_d2_mean = 0, gamma_d2_sd = 1)
#> # A tibble: 1,000 x 9 #> id z0 z1 z2 y0 y1 y2 prob_d1 prob_d2 #> <int> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> #> 1 1 5.47 10.7 15.2 0 0.672 1.02 1.00e+0 9.86e-1 #> 2 2 9.05 0.334 0.245 0 -3.30 -3.61 9.97e-1 5.01e-1 #> 3 3 9.42 892. 1088. 0 4.55 4.75 2.50e-5 1.00e+0 #> 4 4 6.16 0.00257 0.00437 0 -7.78 -7.25 5.14e-2 3.07e-1 #> 5 5 8.03 0.0508 0.181 0 -5.06 -3.79 1.00e+0 3.39e-1 #> 6 6 5.05 9.74 14.3 0 0.658 1.04 6.91e-2 1.44e-5 #> 7 7 6.84 0.0000369 0.000337 0 -12.1 -9.92 3.64e-2 7.20e-1 #> 8 8 8.49 67.4 3.36 0 2.07 -0.925 1.33e-2 3.68e-8 #> 9 9 9.48 3.96 6.76 0 -0.872 -0.338 1.00e+0 6.65e-1 #> 10 10 8.24 2.09 1.95 0 -1.37 -1.44 9.69e-1 9.70e-1 #> # … with 990 more rows