Cumulative statistics are shown to gauge how the simulations converge.

# S3 method for simulations_collection
as_tibble(x, target_dose = NULL, alpha = 0.05, ...)

Arguments

x

object of type simulations_collection

target_dose

numerical dose index, or NULL (default) for all doses

alpha

significance level for symmetrical confidence intervals

...

extra args are ignored

Value

a tibble with cols:

  • dose, the dose-level

  • n, cumulative inference using the first n simulated iterations

  • design.x, The first design in the comparison, aka design X

  • hit.x, logical showing if design X recommended dose in iterate n

  • design.y, The second design in the comparison, aka design Y

  • hit.x, logical showing if design Y recommended dose in iterate n

  • X, cumulative sum of hit.x within dose, i.e. count of recommendations

  • X2, cumulative sum of hit.x^2 within dose

  • Y, cumulative sum of hit.y within dose, i.e. count of recommendations

  • Y2, cumulative sum of hit.y^2 within dose

  • XY, cumulative sum of hit.x * hit.y within dose

  • psi1, X / n

  • psi2, Y / n

  • v_psi1, variance of psi1

  • v_psi2, variance of psi2

  • cov_psi12, covariance of psi1 and psi2

  • delta, psi1 - psi2

  • v_delta, variance of delta

  • se_delta, standard error of delta

  • delta_l, delta - q * se_delta, where q is alpha / 2 normal quantile

  • delta_u, delta + q * se_delta, where q is alpha / 2 normal quantile

  • comparison, Label of design.x vs design.y, using design names